
Exact results for the activity and isothermal compressibility of the hard-hexagon model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L983

(http://iopscience.iop.org/0305-4470/21/20/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L983-L988. Printed in the UK 

LETTER TO THE EDITOR 

Exact results for the activity and isothermal compressibility of 
the hard-hexagon model 

G S Joyce 
Wheatstone Physics Laboratory, King's College, Strand, London WCZR 2LS, UK 

Received 5 July 1988 

Abstract. The Klein and Fricke theory of modular functions is used to derive closed-form 
algebraic expressions for the activity z ( p )  and isothermal compressibility K ~ ( P )  of the 
hard-hexagon lattice gas model in the disordered regime, where p is the dimensionless 
number density. Similar results which are valid in the ordered regime are also presented. 

The hard-hexagon lattice gas model (Gaunt and Fisher 1965, Runnels and Combs 
1966, Gaunt 1967) was solved exactly by Baxter (1980,1981) using the method of 
corner transfer matrices (Baxter 1972, 1982). In particular, in the disordered regime 
Baxter obtained the basic results 

p = -xG( x)H(  x 6 ) P (  x')/ P( X) (2) 

z = -x [H(x ) /G(x ) ] '  (3) 
where S is the grand partition function per site in the thermodynamic limit, p is the 
dimensionless number density, z is the activity of the gas, 

a 

P ( x ) =  n ( l -X* " - ' )  
f l= l  

and x is a non-physical parameter with -1 < x S 0. When x + -1+ the model exhibits 
an order-disorder phase transition with critical values for p and z given by 

p c  = A(5 -45) (7) 

z ,  = +( 11 + 5J5) (8) 

and 

respectively. Baxter also derived similar results in the ordered regime z, < z <CO. 

Recently Tracy er al (1987) have proved that if we write 

x = e x p ( 2 ~ r i ~ )  (9) 
where T is a complex variable in the upper half-plane, then the quantities (1)-(3) are 
modular functions of T with respect to certain congruence subgroups of the modular 

0305-4470/88/200983 +06$02.50 0 1988 IOP Publishing Ltd L983 



L984 Letter to the Editor 

group (Schoeneberg 1974). From this result and standard theorems in modular function 
theory it is possible to establish the existence of various polynomial equations which 
are satisfied by the functions Z ( T ) ,  p ( 7 )  and z ( 7 ) .  In particular, Richey and Tracy 
(1987) have shown that E(7) and p ( 7 )  satisfy a polynomial relation of the type 

22 4 

i = o  j=o 
c 1 CijPiE:” = 0 (10) 

where the coefficients cu are real constants. The basic equation of state (10) was used 
by Richey and Tracy to express the isothermal compressibility ~ ~ ( p )  in the disordered 
regime as a rational function of E and p. 

The main aim in this letter is to demonstrate that the polynomial equation for the 
modular functions p ( 7 )  and z ( 7 )  can be obtained directly from the classic work of 
Klein and Fricke (1892). This polynomial relation will then be used to derive explicit 
closed-form expressions for the functions z ( p )  and K&)  in the disordered regime. 
Similar formulae which are valid in the ordered regime will also be given. 

We begin by applying the Ramanujan identity 

P(x’)/P(x) = [H(x)G(x6)  -xG(x)H(x6)]-’  ( 1 1 )  
to (2). The result ( 1  1) was stated by Ramanujan in an unpublished manuscript (see 
Birch 1975) and proved by Rogers (1921). Hence we find that 

X[H(X6)/G(X6)1 = -EH(x)/G(x)l[p/(l -PI]. (12) 
Next we express (3) and (12) in terms of the icosahedral function (Klein and Fricke 
1892, p 383) 

r(7)  = x 1 ’ 5 [ ~ ( X ) / ~ ( x ) 1  (13) 
where x = e x p ( 2 r i ~ ) .  In this manner we obtain the basic equations 

5 7 7 )  = -z(7) (14) 

5(67) = -5(7)p(7)/[1 -p(7)1. (15 )  

and 

The function 5(7) is a univalent modular function (or hauptmodul) for the principal 
congruence subgroup r(5), and is of special interest since every modular function 
associated with r(5) can be expressed as a rational function of L(7). It is also known 
that the two functions 5(7) and 5(n7), where n = 2 ,3 ,4 , .  . . , must satisfy a polynomial 
modular equation (see Klein and Fricke 1892, Mordell 1922). For the case n = 6  the 
detailed structure of this modular equation can be determined from the work of Klein 
and Fricke (1892, pp 137-9, 150-1). It is found that 

187[425:52(51+56) -42(51 + &)+(tP+ 666) + 365156(‘6(c14+ 63 
+ 2255:&:+ 5:) + 4005:[:]* 

- 882(56 - 51)2{374(5;0510+ 1 )  -66(5:5,5- 1 )E21 (l:+ 56s) 
+1755156(5:+5~)+4505:562(51+56)1+(5:o+ ri9 
+ 1 O051 56(5:+ 56“) + 20255:5:(5P+ 566) + 14 4ooi?i,”cif+ 53 
+ 44 1005:5:( 5: + 5;) + 63 5045:5:} 

+ 1936(5,-51)6[425:52(5, +56)-42(51 +56)+(5:+566) 
+3661 56(5f+ 564) + 2255:5:(5:+ 5%) + 4005:i~i 
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where ll = { ( T )  and &E l (67).  If (14) and (15) are substituted in this result we obtain 
the required polynomial relation: 

p ( l  - p ) l l  - (1 - p ) 5 ~ , ( p ) z + p 2 ( 1  - p ) 2 ~ 2 ( p ) z 2 - p 5 ~ l ( p ) z 3 + p 1 1 ( 1  - p)z4= 0 

Pl(p)  = (1 -13p+66p2- 1 6 5 p 3 + 2 2 0 p 4 - 1 6 5 p 5 + 7 7 p 6 - 2 2 p 7 )  

PZ(p) = (1 - 13p +63p2- 125p3+6p4+401p5 -689p6+476p7- 119~’ ) .  

(17) 

(18) 

(19) 

where 

Equation (17) was first derived by the present author several years ago in unpublished 
work, and was used to investigate the singularity structure of the virial series for the 
hard-hexagon model (see Gaunt and Joyce 1980). 

Next we establish a closed-form expression for the physical branch of the algebraic 
function z = z ( p )  by solving the quartic equation (17). The final result is 

4p6( 1 - P ) Z ( P )  = ( 1 - 5~ + 5P’)’JQi ( P )  + 

-(I - 5 p + 5 p 2 ) [ 2 ~ 3 ( p ) + 2 ~ z ( p ) J ~ l ( p ) ~ ” 2  (20) 

Q l b )  = (1 - p  + P2) ( l  - 5P + 5 P 2 )  (21) 

Q 2 ( p )  = (1 -2p)(  1 - l l p  +44p2 -77p3 +66p4- 33p5 + 1 l p 6 )  (22) 

-576p7+219p8-50py+ lop”). (23) 

where 

Q 3 ( p ) = ( l -  16p+ 106~’-378p3+803p4- 1080p5+962p6 

The physical branch z ( p )  has a Taylor series representation about p = 0 with a radius 
of convergence 

(24) 

which is less than pc (see Joyce 1988), whereas the critical behaviour of z ( p )  as 
p -+ pc- is described by the Puiseux expansion (see Hille 1973): 

pr=&J5[(4J10 - 5 J 5  + 5)  -J10(4J io - 5J5 -4J2+ 7)1’2]1’2 

Z /  Z, = 1 - 53 i2y3 [  1 + + gy2 - :( -6 + 5J5)y3 - &( -77 + 320J.5)~~ 

-!(9+25J5)y5-&(l0 739+35 520J5)y6-T(-1 + 1 3 4 5 ) ~ ~  

+&(1138 969-209 28OJ5)y8+3(131 +45J5)y9 

+&(91 333 921 + 51 570 5 6 0 J 5 ) ~ ’ ~ + .  . .] 

Y = [ J ~ ( p c - P ) l ” ’ .  (26) 

yr=fJ2[(4J10- 5 J 5  + 1) -J2(4J10- 5J5 -4J2 + 7)1’2]1’4. 

(25) 

where 

It can be shown that the radius of convergence of this expansion is 

(27) 

We now determine the isothermal compressibility K~ in the disordered regime by 
using formula (20) to evaluate the thermodynamic relation 

K:’ k , T p ~ , =  (z/p)(dz/dp)-I .  (28) 
In this manner we obtain 
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where 
R , ( p )  = (7  - 44p  +99p2 - 1 lop3 + 5 5 p 4 )  

R , ( p )  = ( 1  - 2 p ) ( 7  - 16p +21p2 - lop3+ 5p4)  

and O a p  apt. It follows from the closed-form expression ( 2 9 )  that the reduced 
isothermal compressibility K? satisfies the polynomial equation 

( 1  - d4(1 - p + P 2 ) 2 s , ( P )  + 10(1 - p I 3 ( l  - P + p2)2S,(P)KT 

+ ( I  - P ) 2 ( 1  - P + p 2 ) S * ( p ) ( K T ) 2 - - 1 0 p ( l  -P)201(P)(KT)3 

- 3 6 ( 1 - 5 ~ + 5 p ~ ) ( ~ : ) ~ = O  ( 3 2 )  

(33) 

+6625p8-3125p9+625pLo) ( 3 4 )  

where 
S , ( p ) = ( l -  10p+33p2-36p3+ 18p4-70p5+ 1 4 0 ~ ~ -  100p7+25p8)  

S , ( p ) = ( 2 5  - 3 1 7 ~  + 1352p2-2395p3+2385p4-3100p5+5700p6-7750p7 

and O a p < p , .  
The quartic equation ( 3 2 )  can be used to expand K $  in the form 

where pr is defined in ( 2 4 ) .  A list of the coefficients k, is given in table 1 for 1 ~ 2 4 .  
The coefficients kl for 1 G 7  were calculated by Gaunt (1967)  using diagrammatic 

Table 1. Coefficients k ,  in the expansion (35). 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 
-7 
18 

-24 
24 

6 
66 

258 
1014  
3 906 

14 760 
54 696 

198 510 
704 010 

2431 110 
8 130 096 

26 103 624 
79 292 226 

221 534 442 
532 863 372 
870 102 906 

-842 584 128 
-17420140980 

-111 985 825 752 
-559 952 980 782 
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methods. It is found from formula (29) that the function K;(P) exhibits two non- 
physical branch point singularities on the circle of convergence IpI = pr at 

p; = t -&J10[(4Jio- 5 J 5  -4J2+7) ' / 2  * i (4 J io  - 545 + 4 J 2  - 7 p 2 ] .  (36) 

These singularities give rise to an interesting periodic variation in the sign of the 
coefficient kl as I -* CO. The critical behaviour of K $  as p -* pc- may also be determined 
from (32) by applying the h i seux  expansion method to the singular point pc. This 
procedure yields 

K $  = h ( 5  + J 5 ) y - ' [  1 -2y + Q( 1 + 4J5)y2+f(5-2d5)y3 

+&(479+40v'5)y4+i(29+3J5)y5 

+&,(13 889+2076J5)y6+&45+ 8J5)y7 

+&(lo31 867+255 44w5)y8+a(99+53d5)y9 

+&(-1616 383+735 604J5)ylo+. . .] (37) 

In principle the grand partition function per site Z(p)  in the disordered regime 
where the variable y is defined in (26) and Iy1 <yr .  

can be determined from formula (29) by using the relation 

lnZ(p) = [K$(P)]-' d p +  c, I 
where C, is a constant of integration. It is clear, however, that the direct evaluation 
of the integral (38) is a difficult task. It is fortunate, therefore, that a closed-form 
expression for Z(p)  may be readily obtained by solving the implicit equation of state 
(10) established by Richey and Tracy (1987). The final result is 

4U2H2 = TI( U )  - (1 + U + U 2 y 2 (  1 + 5u + 5u2)3/2T2( U )  

+ [2 T ~ (  U )  - 2( 1 + U + u2)'I2( 1 + 5 U + 5 u 2 ) 3 / 2  T] ( U ) T ~ (  U )]'I2 (39) 

where 

(40) 

(41 1 

TI ( U )  = ( 1 + 12 U + 48 U' + 56 U - 42 U' - 12 U + 1 0Ou6 - 132 u7 - 625 U 1 2 )  

T2( U )  = (1 +4u  - 5 ~ ' -  1Ou3+Mu4- 88u5+ 1 2 1 ~ ~ -  1 10u7+ 5 5 ~ ~ )  

T~(u) = ( 1  +24u+24Ou2+ l264u3+3564u4+4344u5- 1O16u6-4104u7 

+ 5 5 6 2 ~ ~  + 5 6 8 ~ ~  - 11 388u'O-t 16 9 2 0 ~ "  - 6 7 8 0 ~ "  - 18 6 0 0 ~ ' ~  

+ 4 4 4 9 6 ~ " - 5 0 4 0 0 ~ ' ~ + 3 7  8 0 0 ~ ' ~ + 2 4 0 0 0 ~ ' ~  

- 128 500uI8+ 165 0 0 0 ~ ' ~ + 3 8 4 3 7 5 ~ ' ' )  (42) 

u = p - 1  (43) 
and O s p s p , .  

the reduced pressure of the gas 
If the expansion (35) is substituted in (38) we can construct the virial series for 
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where a, is the area of a unit cell in the lattice. The values of the virial coefficients B, 
have already been given by Gaunt and Joyce (1980)  for 1s 24. In a similar manner 
the Puiseux expansion ( 3 7 )  may be used to determine the critical behaviour of p ( p )  
as p + p c - .  We find that 

( p c - p ) a o /  k, T = $(J5 - l ) y 3 [  1 + $y + &(3 1 - 4 J 5 ) y 2  

+ i (5  - J 5 ) y 3  - &( -37 + 4 0 J 5 ) y 4  - 3 7  + J5)yS 

- h ( 8 9 4 3  + 196J5)y6 - s ( 9 7  - 3 J 5 ) y 7  

-&(2049 079 - 139 952J5)y8 -;(213 - 2 5 4 5 ) ~ ~  

-&(lo051 0 1 7 - 2 4 6 9 6 7 6 J 5 ) ~ ' ' + .  . .] ( 4 5 )  

pcao/ kB T = f ln[&25 + 1 Ids)] ( 4 6 )  

and the variable y is defined in ( 2 6 ) .  
Finally, we note that modular function theory also enables one to derive closed-form 

expressions for z ( p ) ,  K : ( P )  and E ( p )  which are valid in the ordered regime pc < p < f. 
In particular, we have 

[ z ( p ) ] - ' =  - $ ( 2 - 3 p ) - ' ( 1  - ~ ) - ~ [ ( l -  12p+45p2-66p3+33p4)  

where 

+ ( - 1  + 5 p  - 5p2)3 /2(  - 1 + 9p - 9 p 2 p 2 ]  ( 4 7 )  

and 

[ ~ $ ( p ) ] - '  = 3 ( 1 - 3 ~ ) - ' ( 2  - 3 p ) - ' (  1 - p ) - ' [ ( - l +  5 p  - 5 p 2 )  

+ (1 - 2 p ) ( - 1 + 5 p  - 5 p 2 ) 1 / 2 ( - 1 + 9 p  -9p2) - ' " ] .  ( 4 8 )  

A more detailed discussion and analysis of these results is given elsewhere (Joyce 1988). 

References 

Baxter R J 1972 Ann. Phys., N Y  70 193-228 
- 1980 J. Phys. A :  Marh. Gen.  13 L61-70 
- 1981 J. Srat. Phys. 26 427-52 
__ 1982 Exacrly Solved Models in Srarisrical Mechanics (New York: Academic) 
Birch B J 1975 Math. Proc. Camb.  Phil. Soc. 18 73-9 
Gaunt D S 1967 1. Chem. Phys. 46  3237-59 
Gaunt D S and Fisher M E 1965 J.  Chem. Phys. 43  2840-63 
Gaunt D S and Joyce G S 1980 J. Phys. A: Marh. Gen.  13 L211-6 
Hille E 1973 Analyfic Function Theory vol 2 (New York: Chelsea) p 105 
Joyce G S 1988 Phil. Trans. R. Soc. A325 643-702 
Klein F and Fricke R 1892 Vorlesungen uber die Theorie der elliptischen Modulfunktionen vol 2 (Leipzig: 

Mordell L J 1922 Proc. Lond. Math. Soc. (2) 20 408-16 
Richey M P and Tracy C A 1987 J.  Phys. A :  Mafh .  Gen.  20 L1121-6 
Rogers L J 1921 Proc. Lond. Marh. Soc. (21 19 387-97 
Runnels L K and Combs L L 1966 1. Chem. Phys. 45 2482-92 
Schoeneberg B 1974 Ellipric Modular Functions (Berlin: Springer) 
Tracy C A, Grove L and Newman M F 1987 J. Srar. Phys. 48  477-502 

Teubner) 


